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Connected-UNets: a deep learning architecture for breast mass
segmentation
Asma Baccouche 1✉, Begonya Garcia-Zapirain2, Cristian Castillo Olea2 and Adel S. Elmaghraby1

Breast cancer analysis implies that radiologists inspect mammograms to detect suspicious breast lesions and identify mass tumors.
Artificial intelligence techniques offer automatic systems for breast mass segmentation to assist radiologists in their diagnosis. With
the rapid development of deep learning and its application to medical imaging challenges, UNet and its variations is one of the
state-of-the-art models for medical image segmentation that showed promising performance on mammography. In this paper, we
propose an architecture, called Connected-UNets, which connects two UNets using additional modified skip connections. We
integrate Atrous Spatial Pyramid Pooling (ASPP) in the two standard UNets to emphasize the contextual information within the
encoder–decoder network architecture. We also apply the proposed architecture on the Attention UNet (AUNet) and the Residual
UNet (ResUNet). We evaluated the proposed architectures on two publically available datasets, the Curated Breast Imaging Subset
of Digital Database for Screening Mammography (CBIS-DDSM) and INbreast, and additionally on a private dataset. Experiments
were also conducted using additional synthetic data using the cycle-consistent Generative Adversarial Network (CycleGAN) model
between two unpaired datasets to augment and enhance the images. Qualitative and quantitative results show that the proposed
architecture can achieve better automatic mass segmentation with a high Dice score of 89.52%, 95.28%, and 95.88% and
Intersection over Union (IoU) score of 80.02%, 91.03%, and 92.27%, respectively, on CBIS-DDSM, INbreast, and the private dataset.
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INTRODUCTION
Breast cancer is the most common type of cancer that is leading to
death among women, where 41,170 death cases were reported in
the United States in 2020 and it represents a rate of 15% of
estimated deaths against the other types of cancer1. Studies
emphasized the importance of frequent mammography screening
in order to reduce the mortality rate by detecting the breast
tumors early before being spread to normal tissues and other
healthy organs2. Therefore, mammograms are inspected every day
by radiology experts to search for abnormal lesions and detect the
location, shape and type of any suspicious regions in the breast.
Although this process is considered crucial and requires more
precision and accuracy, it remains expensive and exposed to error,
due to the increasing number of daily screening mammograms3.
Medical image segmentation task helps doctors to extract detailed
information of the suspicious regions of tumors for further
diagnosis and pathology findings. Thus, an automated system
can benefit from the high numbers of mammograms and handle
this process automatically.
In the last years, the advance in computer vision applications

and algorithms has shown remarkable results in developing tools
to assist doctors in detecting and segmenting tumors with the
lowest possible error in many medical image applications and
particularly in mammography4–6. Traditional techniques for tumor
segmentation, such as region-growing, active contour and
watershed, relied on extracting handcrafted features that only
represent gray-level, texture, and morphology to label the pixels
and indicate the contour surrounding the mass tumors, while
excluding the background tissue7,8. Computer-aided diagnosis
(CAD) development for breast cancer imaging has been recently
renewed to cope with the rapid emergence of deep learning

algorithms and Artificial intelligence, and it highlights the new
systems that may hold real potential to improve clinical care9–11.
Recently, the success of deep learning models was highlighted

in many medical applications for their capability to extract high-
level features directly without knowledge assistance12–15. Con-
volutional neural networks (CNNs) were among the first archi-
tectures that attempted to label pixels surrounding objects at
different scales and shapes16. In respect of medical image
segmentation models, the encoder–decoder networks, the fully
convolutional network (FCN), were developed and widely known
for their ability to extract deep and semantic features and map
them with fine-grained details of the target objects over complex
backgrounds17,18. With the introduction of skip connection, the
encoder–decoder architectures were transformed to UNet archi-
tecture that was successfully implemented in many medical image
segmentation works19–21.
Another variation of the FCN, the full resolution convolutional

network (FrCN), was introduced by Al-Antari et al.22 to segment
the detected breast masses, and it produced a Dice score of
92.69% and a Jaccard similarity coefficient of 86.37% on INbreast
dataset. Accordingly, Zhu et al.23 employed a multi-scale FCN
model followed by a conditional random field (CRF) for mammo-
graphic mass segmentation, and they achieved Dice score of
90.97% on the INbreast dataset and 91.30% on the DDSM-BCRP
dataset. Another work proposed by Singh et al.24 was inspired by
the FCN architecture and developed a conditional Generative
Adversarial Network (cGAN) for breast tumor segmentation. The
work achieved a Dice score of 92.11% and an Intersection over
Union (IoU) score of 84.55% on the INbreast dataset and a Dice
score of 88.12% and an IoU score of 79.87% on a private dataset.
Medical image segmentation usually presents challenging

cases; and consequently, FCN network suffered from low
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segmentation accuracy due to the loss of spatial resolution in the
case of small objects and irregular shapes. Therefore, a new
model, called UNet, was introduced by Ronneberger et al.25 to
overcome the limitation of FCN models. UNet proposed to
integrate the high-level features from the decoder with the low-
level features from the encoder. This fusion was maintained with
skip connections that made the UNet architecture adequate in
several medical applications and particularly in mammography. A
work by Soulami et al.26 relied on an end-to-end UNet model for
the detection, segmentation, and classification of breast masses in
one stage, where the segmentation evaluation showed a Dice
score of 90.5% for both DDSM and INbreast datasets. Similarly,
Abdelhafiz et al.27 implemented a Vanilla UNet model to segment
mass lesions in entire mammograms, and it achieved a mean Dice
score of 95.1% and a mean IoU score of 90.9% on both digitized
film-based and fully digitized MG images.
Inspired by the success of UNet and its variations to improve

the overall performance, we propose an architecture that
connects two simples UNets, called Connected-UNets. We revisit
the original idea of UNet architecture, which added skip
connections between an encoder and a decoder network, and
we similarly apply another modification of skip connection
oppositely between a decoder and an encoder network after
cascading a second UNet. Therefore, the final architecture
presents two cascaded encoders and decoders that are all
alternately connected via different skip connections. We expand
the idea of recovering the fine-grained features that are lost in the
encoding path of UNet, and we apply it to encode the high-
resolution features by connecting them to the previously decoded
features. We also add the Atrous Spatial Pyramid Pooling (ASPP)
mechanism to the standard UNet architecture and we apply the
proposed architecture on two other variations, AUNet and
ResUNet, to develop the Connected-AUNets and the Connected-
ResUNets. We implement the architectures for segmenting
regions of interest (ROI) of breast mass tumors that were
previously detected from mammograms of two widely used
datasets: Curated Breast Imaging Subset of Digital Database for
Screening Mammography (CBIS-DDSM) and INbreast, and from an
independent private dataset. We integrate the detection and
localization step, presented in a previous work, with the new
segmentation step into a final framework that also proposes a
preliminary data-enhancement step. In fact, we evaluate the
architectures by adding synthetic data generated using an image-
to-image translation method, cycle-consistent Generative Adver-
sarial Network (CycleGAN), between the different mammography
datasets.

RESULTS
All experiments using the proposed architecture models were
conducted on a PC with the following specifications: Intel(R) Core
(TM) i7-8700K processor with 32 GB RAM, 3.70 GHz frequency, and
one NVIDIA GeForce GTX 1090 Ti GPU. Python 3.6 was used for
conducting all experiments.

Data preparation
In this segmentation stage, only correctly detected and classified
masses by YOLO model were considered and the false predictions

were discarded as similarly highlighted in previous works7,23.
Some cases of mammograms have more than one detected mass
lesion, therefore, a total of 1467, 112, and 638 masses were,
respectively, considered from the CBIS-DDSM, INbreast, and the
private dataset. Our network is applied on single detected ROIs
and therefore our intention was to consider mammograms with
multiple lesions at the detection stage and treat them separately
as single ROIs of mass lesions. The predicted ROI masses were next
resized into 256 × 256 using a bi-cubic interpolation in case the
original size is small, or using an inter-area resampling interpola-
tion in case it is large. All images were preprocessed to remove
additional noise and degradation caused by the scanning
technique of digital X-ray mammography28,29. Thus, we applied
a histogram equalization to enhance the compressed regions and
smooth the distribution of the pixels that helps the pixel
segmentation. All images were normalized to a range of [0, 1].
To train the proposed segmentation deep learning models, a

large amount of annotated samples should be prepared to
generalize the learning curve of the models. Due to the limited
amount of ROI masses in each dataset, we have augmented the
original ROIs four times by rotating them with the angles Δθ= {0°,
90°, 180°, 270°}. We have also transformed them twice differently
using the Contrast Limited Adaptive Histogram Equalization (CLAHE)
method. Consequently, raw data of single ROI images were
augmented six times into a total of 8802, 672, and 3828 of ROI
masses were, respectively, prepared from the CBIS-DDSM, INbreast,
and the private dataset to train and test the proposed architectures.

Evaluation metrics and experimental setup
Segmentation stage is evaluated using the Dice similarity score,
also called F1-score, which represents a coupled average of the
intersection between areas and the total areas as indicated in Eq.
(1). Accordingly, we use another evaluation metric, the IoU score,
also called the Jaccard score, which is detailed in Eq. (2). A good
performance of segmentation is achieved where the pixels
surrounding all the masses are correctly segmented and thus a
binary mask is generated from the segmented contour of the
mass lesions with a high Dice score and IoU score.

Dice score A; Bð Þ ¼ 2 ´Area of Intersection A; Bð Þ
Area of Að Þ þ Area of Bð Þ ¼ 2 ´ A \ Bð Þ

Aþ B

(1)

IoU score A; Bð Þ ¼ Area of Intersection A; Bð Þ
Area of Union A; Bð Þ ¼ A \ B

A∪ B
(2)

To train the proposed architecture models, a learning rate of
0.0001 with Adam optimizer is employed. A weighted sum of Dice
and IoU losses is used as a segmentation loss function using the
Dice score and IoU score between true and predicted samples, as
detailed in Eq. (3).

Segmentation lossðtrue; predictedÞ ¼ � 0:4 ´Dice score true;predictedð Þð
þ 0:6 ´ IoU true;predictedð ÞÞ

(3)

Each mammography dataset is randomly split into groups of
70%, 20%, and 10%, respectively, for training, testing, and
validation sets as shown in Table 1 that highlights the data
distribution of each mammography dataset. It is important to

Table 1. Data distribution of the mammography datasets.

Raw MGs data Raw ROIs data Augmented data (ROIs*6) Training data (70%) Testing data (20%) Validation data (10%)

CBIS-DDSM 1467 1467 8802 6161 1760 881

INbreast 107 112 672 470 134 68

Private 389 638 3828 2679 766 383
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highlight that in Table 1 that some of the raw MGs have multiple
ROIs. Accordingly, 100 epochs and 8 mini-batches are used to
optimize the network parameters with the training and validation
sets.
In order to evaluate our integrated framework system, we first

define a segmentation accuracy measure to be the mean IoU
score for correctly identified ROIs based on a 90% overlap
threshold and we refer to it as IoU_90 score as shown in Eq. (4).
Then, a final segmentation accuracy is introduced as an end-to-
end accuracy for the two stages, explained in Eq. (5).

IoU90 score ¼ mean IoU scores8ROIsð Þ if IoU score A; Bð Þ � 90

Not applicable if IoU score<90

�

(4)

Final segmentation accuracy ¼ Detection accurcay rate ´ IoU90 score

(5)

Quantitative segmentation results
As shown in Table 2, the results are measured for each testing set
where we computed the two evaluation metrics for the
segmented maps per pixel and compared them to the original
ground truth.
The comparative results show that the proposed Connected-

UNets architecture performs better than the standard UNet in
terms of Dice score and IoU score for all the experimental datasets.
We also enhanced the segmentation performance of the standard
AUNet and ResUNet using the architecture. Accordingly, the
results show a comparison of the standard architectures where
ResUNet achieved better results than the AUNet, and the later
architecture had a better performance than the UNet. The results
emphasize the advantages of the attention mechanism and the
residual blocks that were added to the simple UNet. We clearly
notice an improvement of Dice score by 3.6% using the
Connected-UNets, 3.4% using the Connected-AUNets, and 4%
using the Connected-ResUNets on the CBIS-DDSM dataset. For the
INbreast dataset, we improved the Dice score by 4.15% using the
Connected-UNets, 2.17% using the Connected-AUNets, and 1.42%
using the Connected-ResUNets. Similarly, we had an improvement
of Dice score on the private dataset by 5.85% using the
Connected-UNets, 5.57% using the Connected-AUNets, and 2.3%
using the Connected-ResUNets.
Moreover, the segmentation performance of our proposed

Connected-UNets and its variations against the standard UNet,
AUNet and ResUNet, was evaluated by the area under curve (AUC)
over test sets of all datasets. Segmented images were first
generated using each model where pixels were predicted in the
range of 0 and 255. After that, predicted images were normalized
of scores in the range of 0 and 1. Similarly, ground truth images
were normalized to have values of either 0 or 1. Therefore, the
problem was transformed into a binary classification task of pixels

and consequently receiver operating characteristic (ROC) was
computed between the predicted pixels and their true values.
Figure 1 shows a comparison of ROC curves where we clearly
notice that the proposed architectures outperform all standard
models with an average AUC of 0.79 for the CBIS-DDSM, 0.94 for
the INbreast, and 0.95 for the private dataset.
According to Table 2, the private dataset had the best

segmentation performance along with the proposed architectures
as it represents the best image resolution among the used
mammography datasets. Therefore, we applied the CycleGAN
model to translate images from CBIS-DDSM and INbreast datasets
(i.e., weak domains) into the private dataset (i.e., strong domain).
Synthetic images were then created after training the CycleGAN
model between the unpaired datasets and generating the new
ROI masses for the CBIS-DDSM and the INbreast as shown in the
examples below in Fig. 2, where we clearly see the enhanced
quality of the new ROI masses that benefit from each dataset’s
texture.
Furthermore, we trained the proposed architectures on the

original and synthetic images to predict the segmentation
mappings. Table 3 shows the improvement of segmentation’s
performance of all the standard and architectures using the joined
dataset of original and synthetic images. In fact, we notice an
increase of Dice score on the CBIS-DDSM by 3.76% using the
standard UNet, 3.97% using the standard AUNet, and 4.17% using
the ResUNet. Similarly, we have an improved Dice score of 4.8%
using the Connected-UNets, 4.11% using the Connected-AUNets,
and 4.51% using the Connected-ResUNets.
The integrated framework is finally evaluated using all

suggested models. As the end-to-end performance depends on
the first detection and localization step which used YOLO model,
the segmentation step was first reported using the segmentation
accuracy measure IoU_90score that was later multiplied by the
detection accuracy rate to form a final segmentation accuracy.
Table 4 shows a comparison of final segmentation results of the
different models after using the detection accuracy rate of 95.7%,
98.1%, and 98%, respectively, for CBIS-DDSM, INbreast, and the
private dataset30. Consequently, we reported a final segmentation
performance with a maximum accuracy of 86.91%, 93.03%, and
95.39% using the Connected-ResUNets architecture model,
respectively, for CBIS-DDSM, INbreast, and the private dataset.
Finally, a comparison of the results of the latest state-of-the-art

methods and models to segment the breast masses is listed in
Table 5. Our proposed architectures outperformed the UNet
model and its current variations. Comparing the Dice score and
the IoU score with the other methods shows that we achieved the
highest segmentation performance using the architectures on the
two public datasets: CBIS-DDSM with a Dice score of 89.52% and
an IoU score of 80.02%, and INbreast with a Dice score of 95.28%
and an IoU score of 91.03% using the Connected-ResUNets. We
surpassed the work of Ravitha Rajalakshmi et al.31 by 6.62% Dice

Table 2. Segmentation performance of our proposed networks on the test sets.

Proposed architectures Dice score (%) IoU score (%) Dice score (%) IoU score (%) Dice score (%) IoU score (%)

CBIS-DDSM INbreast Private

Standard UNet 78.62 64.87 89.21 79.5 89.87 86.43

Connected-UNets 82.22 69.82 93.36 85.75 95.72 91.95

Standard AUNet 80.39 67.29 91.35 82.59 90.25 88.02

Connected-AUNets 83.84 72.19 93.52 86.01 95.82 92.17

Standard ResUNet 80.94 68.05 92.71 84.58 93.58 89.79

Connected-ResUNets 85.01 73.95 94.13 87.63 95.88 92.27
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score on the CBIS-DDSM dataset, and the work of Li et al.32 by
2.56% Dice score on the INbreast dataset.

Qualitative segmentation results
We applied a post-processing step to all segmented ROI masses
by simply removing any outlier point that is far away from the
main contour of the lesions. Consequently, we extracted all the
possible contours from the binary masks and we only selected the
one with the largest area. This was applied for the output of the
standard UNet models, the Connected-UNets model and their
variations.
Figure 3 shows examples of the segmented ROI masses

generated by the experimental models against their ground truth
images. We clearly observe the different quality of the segmenta-
tion maps and results of the Connected-UNets and their variations
always contain less error and capture more precision compared to
the ground truth. Observing the segmentation results, we can see
that Connected-ResUNets is more capable to predict the smallest
details of the tumor’s boundary than the other architectures.
Overall, the proposed architectures outperform the standard
architectures and this indicates the power of the proposed
architectures to learn complex features through the connections
added between the two UNets in the proposed Connected-UNets,
which takes advantages of the decoded features as another input
in the encoder pathway.
Accordingly, a visual comparison of the Connected-ResUNets

model, which uses the suggested ASPP block to connect each
encoder and decoder, opposed to the same model without using
the ASPP block is represented in Fig. 4. We can conclude that the
ASPP block added more precision to the segmentation results.

Fig. 2 Samples of synthetic data from CBIS-DDSM and INbreast
datasets generated by CycleGAN model using the private dataset.
Top rows in each subplot show original mammograms respectively
from CBIS-DDSM (INbreast) dataset. Bottom rows show their
corresponding synthetic mammograms generated by CycleGAN
model that was trained respectively between CBISDDSM (INbreast)
and the private dataset.

Fig. 1 Performance of mass segmentation using the different architectures in terms of ROC curves on the test sets of CBIS-DDSM,
INbreast, and the private datasets. ROC curve plots with True positive Rate (TPR) against the False Positive Rate (FPR) and area under curve
for pixel-wise evaluation of the standard models (UNet, AUNet, and ResUNet) and for the proposed architecture models (Connected-UNets,
Connected-AUNets, and Connected-ResUNets). Subplot on the left shows ROC curve plot for the CBIS-DDSM dataset. Subplot on the right
shows ROC curve plot for the INbreast dataset. Subplot on the bottom shows ROC curve plot for the private dataset.

A. Baccouche et al.
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After that, a qualitative segmentation comparison of the
proposed Connected-ResUNets against the basic ResUNet archi-
tecture is presented in Fig. 5. Additionally, a comparison of Dice
score and IoU score for each corresponding ROI mass is also
achieved. We observe that the proposed architecture model is
capable to capture well the smallest details of the tumors having
different shapes and sizes from all the used datasets. Hence, it is
clear that predicted contours by the Connected-ResUNets is the
closest to the ground truth contours and this is also justified with
the highest Dice score and IoU score values.
Additionally, we compared the segmentation results of one of

the proposed architecture models, Connected-ResUNets, after
adding the synthetic images that were generated by the
CycleGAN model to the training data. Figure 6 shows a better-
segmented contour of the mass tumor using the additional
synthetic images. The results of the new training data yield more
precise pixel segmentation that is close to the ground truth
images. Consequently, the segmentation results’ quality proves
the advantage of adding synthetic images to enhance the
segmentation quality and it confirms the ability of cross-
modality synthesis to augment the size of the data and enhance
quality by embracing other similar domains.
Finally, we applied two state-of-the-art methods that we

discussed, by Al-Antari et al.22 and Li et al.32, to segment ROIs
from all the mammography datasets, and visual comparison
shows that predictions of two suggested models FrCN and CR-
UNET are slightly close to the ground truth images but they do not
capture precisely the contours. Examples shown in Fig. 7 are
selected to be challenging for segmentation and our proposed
architecture models showed better visual results to segment the
mass lesions.

DISCUSSION
Deep learning models have recently achieved remarkable success
in segmenting mass tumors in mammograms. Recent studies
involved the UNet as one of the state-of-the-art architectures and
tried to modify it for a better segmentation performance22–29.

In this study, we introduced an architecture, called Connected-
UNets, which fully connects two single UNets using additional skip
connection paths. The network also employs the ASPP mechanism
as a transition block in order to overcome the challenge of losing
resolution, particularly in the case of small tumors. The new mass
segmentation architecture expands the ability of skip connections
to reconstruct the details lost in the encoding pathway by
revoking the first decoded features and connect them with the
additional encoded inputs. We implemented the architecture on
two variations of UNet, as the Attention UNet (AUNet) and the
Residual UNet (ResUNet).
The results of the proposed architectures showed the segmen-

tation improvement compared to the basic architectures as shown
in Table 2 with a maximum Dice score of 89.52% on the CBIS-
DDSM dataset and 95.28% on the INbreast dataset. Moreover, the
quantitative evaluation indicated the advantage of the ResUNet
and AUNet on segmenting the mass tumors. Hence, the improved
architectures’ Connected-AUNets and Connected-ResUNets out-
performed the Connected-UNets in all the used mammography
datasets. Comparison of the segmentation map results of each
model approve the enhancement made to the standard models to
provide a precise segmentation of the mass boundaries as shown
in Fig. 3.
Limitations of the proposed architectures can occur on the long

training time of an average of 0.638 s per epoch, which is due to
the high computation of the neural networks that have more
trainable parameters than the standard architecture models.
This paper provides an architecture to segment the breast

masses in mammograms. The proposed architecture incorporates
the recent modifications that were suggested to overcome the
challenges of pixel-to-pixel segmentation in medical images, such
as attention mechanism, residual blocks, ASPP concept, etc. The
improved segmentation performance is made after benefiting
from the information decoded using one UNet and propagated
again to a second UNet. In addition, synthetic data were created
using the CycleGAN model for augmenting the training data. This
applies a quality translation between domains in order to embrace
the different quality of the existing mammography datasets (i.e.,
X-ray filter, full-field digital mammography (FFDM)).

Table 4. Final segmentation performance of our proposed networks on the test sets.

Proposed
architectures

IoU90

score (%)
Final segmentation
accuracy (%)

IoU90

score (%)
Final segmentation
accuracy (%)

IoU90

score (%)
Final segmentation
accuracy (%)

CBIS-DDSM INbreast Private

Connected-UNets 90.05 86.18 94.06 92.27 96.99 95.05

Connected-AUNets 90.24 86.36 94.63 92.83 97.22 95.27

Connected-
ResUNets

90.82 86.91 94.83 93.03 97.34 95.39

Table 3. Comparison of the proposed architectures after adding synthetic CBIS-DDSM and INbreast.

Proposed architectures Dice score (%) IoU score (%) Dice score (%) IoU score (%) Dice score (%) IoU score (%) Dice score (%) IoU score (%)

CBIS-DDSM without
synthetic data

CBIS-DDSM with synthetic
data (CycleGAN)

INbreast without
synthetic data

INbreast with synthetic data
(CycleGAN)

Standard UNet 78.62 64.87 82.38 72.59 89.21 79.5 93.45 87.54

Connected-UNets 82.22 69.82 87.02 77.07 93.36 85.75 95.16 90.77

Standard AUNet 80.39 67.29 84.36 74.02 91.35 82.59 94.73 89.99

Connected-AUNets 83.84 72.19 87.95 78.89 93.52 86.01 94.89 90.28

Standard ResUNet 80.94 68.05 85.11 76.13 92.71 84.58 94.48 89.59

Connected-ResUNets 85.01 73.95 89.52 80.02 94.13 87.63 95.28 91.03
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In conclusion, this work integrated our recent work30 using
YOLO model for mass detection and the proposed segmentation
architecture models in order to provide a complete clinical tool for
mass tumor diagnoses. Future work aims at expanding this tool to
assist radiologists for more automatic breast cancer diagnosis such
as tumor classification and shape prediction.

METHODS
Technical background
UNet is one of the state-of-the-art models that was developed for medical
image segmentation. Inspired by the FCN. As the name indicates, the
network has a symmetric architecture showing a U-shape. It consists of a
down-sampling path and an up-sampling path. The remarkable contribu-
tion of UNet architecture was the introduction of the skip connections path
that added an advantage to the standard architecture. This helps to
recover the spatial information that gets lost during the down-sampling
path due to the pooling operations.
Many potential scopes of improvement were recently suggested on the

UNet architecture to improve its performance and enhance the quality of
the segmentation. Ravitha Rajalakshmi et al.31 introduced a deeply
supervised U-Net model (DS U-Net) associated with dense CRFs to
segment suspicious regions on mammograms. The model was tested and
gave a Dice score of 82.9% and 79%, respectively, on CBIS-DDSM and
INbreast datasets. Accordingly, a Conditional Residual UNet, called CRUNet,
was also suggested by Li et al32. to improve the performance of the
standard UNet for breast mass segmentation, and it achieved a Dice score
of 92.72% on the INbreast dataset. Inspired by the residual mechanism,
Abdelhafiz et al.33 proposed the Residual UNet, called RUNet or ResUNet,
by adding residual blocks to the standard convolutional layer in the
encoder pathway in order to add deeper effect to the network. The work
was applied for mass segmentation and then detected binary maps were
fed to a ResNet model for classification into benign or malignant. The
segmentation results yielded a Dice score of 90.5% and a mean IoU score
of 89.1% on the INbreast dataset. Similarly, Ibtehaz et al.34 developed an
architecture, called MultiResUNet, which showed a remarkable gain in
performance for biomedical image datasets. Another variation of the UNet
was suggested using the attention mechanism that showed remarkable
success in medical image segmentation35. Consequently, Oktay et al.36

integrated the attention gate into the standard UNet to propose a new
Attention UNet, called AUNet. This improved the prediction performance

across CT pancreas segmentation and yielded a Dice score of 83.1%.
Similarly, Li et al.37 developed an Attention dense UNet for breast mass
segmentation that was compared to three basic state-of-the-art models,
UNet, AUNet and DenseNet. The suggested model achieved a Dice score of
82.24% on the original DDSM database. In another work suggested by Sun
et al.38, a attention-guided dense-upsampling network was developed for
breast mass segmentation in whole mammograms. The architecture
achieved a Dice score of 81.8% on the CBIS-DDSM dataset and 79.1% on
the INbreast dataset.
Aligned with the improvement made in encoder–decoder architecture

to deal with the limitations encountered in medical images segmentation,
the ASPP module was successfully integrated into many networks39. This
showed effectiveness in breast mass segmentation in a work presented by
Wang et al.40 that achieved a Dice score of 91.10% and 91.69%,
respectively, on the INbreast and DDSM-BCRP datasets.
Studying the UNet architecture showed the unknown architecture’s

depth and the restrictive design of skip connections. Therefore, an
architecture, named UNet++, was introduced by Zhou et al.41 to alleviate
the network depth and redesign the standard skip connections. The work
was evaluated on six medical images datasets with multiple modalities,
and it demonstrated consistent performance for semantic and instance
segmentation tasks. A similar variation model, called U-Net+, was
employed by Tsochatzidis et al.42 to segment ROI mass before integrating
it with the classification stage by a CNN model. The segmentation
performance showed a Dice score of 0.722 and 0.738, and a Jaccard index
of 0.565 and 0.585, respectively, on the CBIS-DDSM and DDSM-400
datasets.
Moreover, to deal with challenging medical images, Jha et al.43

presented a DoubleUNets architecture that uses two encoders and two
decoders in sequence and an ASPP module. The network showed a better
performance than the baselines and UNet on four medical segmentation
datasets. In the same context, a Contour-Aware Residual W-Net, called
WRC-Net, was suggested by Das et al.44, which consists of double UNets.
The first UNet was designed to predict objects boundaries and the second
UNet generated the segmentation map. Additionally, a variation of the
UNet was presented by Tran et al.45, named TMD-UNet, which modified
the interconnection of the network node, replaced the standard
convolutions with dilated convolutions layers, and developed dense skip
connections. The network showed superior results than popular models for
liver, polyp, skin lesion, spleen, nuclei, and left atrium segmentation.
With the significant attention given to improving the performance of

neural networks’ algorithms, many studies have focused on enhancing the

Table 5. Comparison of the proposed architectures and state-of-the-art methods.

Reference Method Dataset Dice score (%) IoU score (%)

Tsochatzidis et al.42 UNet+ CBIS-DDSM 72.2 56.5

Sun et al.38 Attention UNet INbreast 79.1 –

CBIS-DDSM 81.8 –

Ravitha Rajalakshmi et al.31 Deeply supervised U-Net (DS U-Net) INbreast 79 83.2

CBIS-DDSM 82.9 –

Dhungel et al.7 Deep structured output learning+ refinement INbreast 85 –

Dhungel et al.12 CNN+ CRF INbreast 90.06 –

Abdelhafiz et al.33 R-UNet INbreast 90.5 89.1

Zhu et al.26 Multi-scale FCN-CRF INbreast 90.97 –

Wang et al.40 ResNet34+ ASPP INbreast 91.1 –

Singh et al.27 conditional GAN (cGAN) INbreast 91.47 83.58

Al-Antari et al.25 Full resolution convolutional network (FrCN) INbreast 92.63 86.37

Li et al.32 Conditional Residual UNet INbreast 92.72 –

Proposed architectures Connected-UNets INbreast 95.16 90.77

CBIS-DDSM 87.02 77.07

Connected-AUNets INbreast 94.89 90.28

CBIS-DDSM 87.95 78.89

Connected-ResUNets INbreast 95.28 91.03

CBIS-DDSM 89.52 80.02
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quality of medical images that are acquired using multiple imaging
modalities. It is often difficult for medical applications to collect enough
instances, therefore, synthetic data were recently adopted to increase a
size of dataset, within either the same images modality, or using cross-
modality translation. Accordingly, Alyafi et al.46 employed Deep Convolu-
tional GAN (DCGAN) to generate synthetic mammograms with mass
lesions to enhance the classification performance in imbalanced datasets.
Another recent technique that was widely used for unpaired image-to-

image translation is the CycleGAN, and it was developed by Zhu et al.47.
This technique learns two mappings by transforming images between two
different domains using two GANS and maintains their reconstruction by a
cycle-consistency loss and hence the name. In fact, CycleGAN was adopted
by Becker et al.48 in order to artificially inject or remove suspicious features
and thus increase the size of the BCDR and INbreast datasets. Moreover, a
cross-modality synthesis approach was introduced by Cai et al.49, it was
inspired by CycleGAN between CT and magnetic resonance images (MRI)
and it was applied on 2D/3D images for segmentation. Another similar
work by Hiasa et al.50 extended the CycleGAN approach by adding
gradient consistency loss and aimed for MRI-to-CT synthesis. The work
yielded an improved segmentation accuracy on musculoskeletal images.
Upon such an idea, Huo et al.51 proposed an end-to-end synthesis and
segmentation network (EssNet) to conduct the unpaired MRI-to-CT images
synthesis and CT splenomegaly segmentation without using manually
annotated CT. This achieved a higher Dice score of 91.88% than the state-
of-the-art performance.

Proposed architecture
Inspired by the efficiency of the skip connections, we propose an
architecture, called Connected-UNets, which alternately connects two
UNets using additional skip connections. Figure 8 shows an overview of
the proposed architecture, where it consists of two standard encoder and
decoder blocks and two ASPP blocks for the transition between the two
pathways. We suggest connecting the first decoder and the second
encoder blocks with additional modified skip connections in order to
reconstruct the decoded information in the first UNet before being
encoded again in the second UNet. Each encoder block includes two
convolution units, which consist of 3 × 3 convolutions followed by an
activation ReLU (Rectified Linear Unit) and a batch normalization (BN) layer.
A maximum pooling operation is then applied for the output of each
encoder block before passing the information to the next encoder. Each
decoder block consists of a 2 × 2 transposed convolution unit (i.e.,
deconvolution layer) that is concatenated with the previous encoder
output, and then the result is fed into two convolution blocks, which
consist of 3 × 3 convolutions followed by an activation ReLU and a BN
layer.

Fig. 3 Examples of the segmentation results on the test set of the datasets. Subplot on the top shows two samples of mammograms from
the CBIS-DDSM dataset. Subplot on the middle shows two samples of mammograms from the INbreast dataset. Subplot on the bottom shows
two samples of mammograms from the private dataset. Each sample from the two rows indicates its corresponding ground-truth (binary)
image, segmentation output images of the standard models (UNet, AUNet, and ResUNet) vs segmentation output of the proposed
architecture models (Connected-UNets, Connected-AUNets, and Connected ResUNets).

Fig. 4 Examples of the segmentation results for the proposed
architecture Connected-ResUNets comparing with and without
using ASPP block. Top row shows an example of original
mammogram from CBIS-DDSM dataset. Middle row shows an
example of original mammogram from INbreast dataset. Bottom
row shows an example of original mammogram from the private
dataset. Each original mammogram indicates its corresponding
ground-truth (binary) image, and segmentation output image of the
Connected-ResUNets without including the ASPP block vs a
segmentation output image of the Connected- ResUNets with
including the ASPP block.

A. Baccouche et al.
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The transition between the down-sample and the up-sample paths is
made with an ASPP block. As the name indicates, this technique uses
“Atrous” (which means “holes” in French) convolution to allow having a
larger receptive field in the transition path without losing resolution.
After going through the first UNet, a second UNet is attached through

new skip connections that use information from the first up-sampling
pathway. First, the result of the last decoder block is concatenated with the

same result after being fed into a 3 × 3 convolution layer followed by an
activation ReLU and a BN layer. This serves as the input of the first encoder
block of the second UNet. The output of the maximum pooling operations
of each three encoder blocks are fed into a 3 × 3 convolutions layers and
then concatenated with the output of the last previous decoder block. The
result is next down-sampled to the next encoder block. The last encoder
block of the second UNet is sent into the ASPP block and the rest is similar
to the first UNet, as explained in Supplementary Fig. 1. Finally, the last
output is given to a 1 × 1 convolutions layer that is followed by a sigmoid
activation layer to generate the predicted mask.
In addition to the proposed architecture that is applied on the standard

UNet, we propose another variation by adding an attention block during
the up-sampling path, called AUNet model. This integrates the attention
mechanism with the skip connections between the encoder and decoder
blocks. Indeed, the additional attention block should allow the network to
weigh the low-level features (i.e., down-sampled information) before being
concatenated with the high-level features (i.e., up-sampled information)
during the skip connections. Thus, a new Connected-AUNets architecture is
introduced as illustrated in Supplementary Fig. 2.
Motivated by the improvement made to the UNet architecture to be

robust enough for segmenting medical images with different scales, we
replace the standard convolution blocks with residual convolution blocks,
as detailed in Supplementary Fig. 3, to become the Residual UNet
(ResUNet), and consequently we proposed a Connected-ResUNets
architecture as detailed in Supplementary Fig. 4. Consequently, adding
the residual convolution blocks should enhance the UNet architecture to
reconcile the features learned at each scale of the down-sampling pathway
and take full advantage of the information propagated that may cause
degradation of the deep network.

Image synthesis using CycleGAN
Given our limited size of annotated datasets and differences in their
resolutions, we propose to apply image synthesis on our mammography
datasets to improve the results of the segmentation. In this study, we
propose a cross-domain image synthesis using one of the effective
methods: cycle Generative Adversarial Network (CycleGAN)50 to enhance
our images dataset.

Fig. 5 Examples of the segmented masses for the proposed architecture Connected-ResUNets comparing with the ResUNet. Top row
shows three examples of mammograms from the CBIS-DDSM dataset. Middle row shows three examples of mammograms from the INbreast
dataset. Bottom row shows three examples of mammograms from the private dataset. Each example indicate contours of their ground-truth
images, contours of segmentation output images of the standard ResUNet, and contours of segmentation output images of the proposed
Connected-ResUNets. Each row also include a comparative bar chart of IoU score and Dice score of ResUNet and Connected-ResUNets
models.

Fig. 6 Examples of the segmentation results for the proposed
architecture Connected-ResUNets with and without adding the
synthetic data. Subplot on the top shows two samples of
mammograms from the CBIS-DDSM dataset. Subplot on the bottom
shows two samples of mammograms from the INbreast dataset.
Each rows indicate original mammogram, its corresponding
synthetic mammogram, ground-truth (binary) image, segmentation
output image of the Connected-ResUNets model trained without
adding synthetic data, and segmentation output image of the
Connected-ResUNets model trained with adding synthetic data.
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In a CycleGAN architecture, a deep learning model learns the mapping
pixel, color distribution, shape and texture between two datasets52. In fact,
a standard GAN model comprises generator and discriminator networks
that are trained alternately such that a generator network tries to produce
fake data that is realistic enough to trick the decimator. A CycleGAN is the
recent extension of GAN models that is particularly designed for image-to-
image translation using unpaired datasets. It has been considered as an
effective deep learning technique for style transfer, domain adaptation,
and data synthesis53–55. The architecture, as shown in Supplementary Fig.
5, consists of two generators and two discriminator networks.
In this work, we developed the CycleGAN model using the available

tutorial in Keras webpage (https://keras.io/examples/generative/cyclegan).
The generator network consists of nine residual blocks and up-sampling
blocks. We did not change the proposed networks and parameters and we
prepared our unpaired input datasets to fit with the model.

Integrated framework: mass detection, image synthesis, and
mass segmentation
Our final framework detects and localizes breast masses in a first step,
and then segments them in a second step. It also involves an advanced
data-enhancement method as a preliminary step before applying the
mass segmentation. This step should not only alleviate the low-
resolution mammograms, but also augment the size of the mammo-
graphy datasets.
In fact, the introduced architecture is applied to the ROIs of breast masses

that were detected from the previous stage. Our framework applied the You-
Only-Look-Once (YOLO) model in previous work30 to locate suspicious breast
lesions and distinguish between mass and calcification lesions. Therefore,
bounding boxes around the suspicious objects were predicted from the
entire mammograms. We evaluated the methodology and provided a

Fig. 7 Examples of the segmentation results for the proposed architecture models again two state-of-the-art methods FrCN22 and CR-
UNET32. Top row shows an example of original mammogram from CBIS-DDSM dataset. Middle row shows an example of original
mammogram from INbreast dataset. Bottom row shows an example of original mammogram from the private dataset. Each original
mammogram indicates its corresponding ground-truth (binary) image, a segmentation output image of a state-of-the-art model FrCN, a
segmentation output image of a state-of-the-art model CR-UNET, vs segmentation output image of the proposed architecture models
(Connected-UNets, Connected-AUNets, and Connected-ResUNets).
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maximum detection accuracy of 98.1% for mass lesions. Given the different
scales of breast masses, our methodology expands some bounding boxes
coordinates by adding extra space around the small tumors. Thus, we obtain
the ROI images and we scale them to 256 × 256 pixels, which is the optimal
input size found experimentally for segmentation networks.
Finally, the detected ROI masses’ images and their generated synthetic

images are fed directly into the segmentation stage using our proposed
architecture as shown in Fig. 9.

Ethics statement
The clinical data was approved by the institutional review boards and
ethical committees of each participation center. The public CBIS-DDSM
dataset was registered under clinical trial NCBITAXON and the public
INbreast dataset was registered under clinical trial INESC. The private
collection was approved by the ethical committee of Mexico under
registration INC-2018-1017. Written informed consent was obtained from
all patients before enrollment.

Datasets
In this study, we evaluated the proposed architectures on two public
datasets, the CBIS-DDSM and INbreast datasets and a private dataset. CBIS-
DDSM56 is an updated and standardized version of the Digital Database for
Screening Mammography (DDSM) dataset, where images were converted

to Digital Imaging and Communications in Medicine (DICOM) format. It
contains 2907 mammograms from 1555 unique patients, where 1467 are
Mass images. Mammograms were acquired with two different views for
each breast (i.e., MLO and CC). Original images have average size of 3000 ×
4800 pixels and are associated with their pixel-level ground truth for mass
regions. INbreast57 is a public database of full-field digital mammography
(FFDM) images and prepared in DICOM format. It presents 410
mammograms where only 107 cases include mass lesions in both MLO
and CC views of 115 unique patients. The raw images were annotated with
experts, and have an average size of 3328 × 4084 pixels.
Additionally, the private dataset is a collection of mammograms from

the National Institute of Cancerology (INCAN) in Mexico City. The
mammograms present stages 3 and 4 of breast cancer of 389 cases with
mass lesions obtained from 208 unique patients. Images were collected
from CC, MLO, ML, and AT views, and have an average of 300 × 700 pixels.
Samples of entire mammograms and their ROI masses are illustrated in Fig.
10. It can be visually observed that the images have different resolutions
and this is due to the different modality and tools configurations that were
used to acquire and store the mammograms.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The public mammography dataset CBIS-DDSM generated and analyzed during the
current study is available in the Cancer Imaging Archive, https://wiki.
cancerimagingarchive.net/display/Public/CBIS-DDSM. The public mammography
dataset INbreast generated and analyzed during the current study is available from
the corresponding author Inês Domingues, Porto, Portugal, on resoanble request
after signing a transfer agreement.
The private mammography dataset generated during and analyzed during the
current study is available from the corresponding author Cristian Castillo Olea
through the oncologist Dr. Eric Ortiz in the National Institute of Cancerology, Mexico.

CODE AVAILABILITY
The code for custom algorithms and data preprocessing is provided as part of the
replication package. It was written in Python v3.6. It is publicly available as a git
repository on GitHub at https://github.com/AsmaBaccouche/Connected-Unets-and-
more.
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